Effective elution of RDX and TNT from particles of Comp B in surface soil.
نویسندگان
چکیده
During live fire training exercises, large amounts of explosives are consumed. Low order detonations of high explosive payloads result in the patchy dispersal of particles of high explosive formulations over large areas of firing range soils. Dissolution of explosives from explosive formulation particles into soil pore water is a controlling factor for transport, fate, and effects of explosive compounds. We developed an empirical method to evaluate soils based on functionally defined effective dissolution rates. An automated Accelerated Solvent Extractor was used to determine the effective elution rates under controlled conditions of RDX and TNT from soil columns containing particles of Comp B. Contrived soils containing selected soil geosorbants and reactive surfaces were used to quantitatively determine the importance of these materials. Natural soils from training ranges of various soil types were also evaluated. The effects of geosorbants on effective elution rates were compound- and sorbent-specific. TNT elution was less than that of RDX and was greatly slowed by humic acid. Iron and iron-bearing clays reduced the effective elution rates of both RDX and TNT. This empirical method is a useful tool for directly generating data on the potential for explosives to leach from firing range soils, to identify general bulk soil characteristics that can be used to predict the potential, and to identify means to engineer soil treatments to mitigate potential transport.
منابع مشابه
Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles.
Live-fire military training can deposit millimeter-sized particles of high explosives (HE) on surface soils when rounds do not explode as intended. Rainfall-driven dissolution of the particles then begins a process whereby aqueous HE solutions can enter the soil and groundwater as contaminants. We dripped water onto individual particles of TNT, Tritonal, Comp B and Octol to simulate how surface...
متن کاملDissolution kinetics of high explosives particles in a saturated sandy soil.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher...
متن کاملDissolution of composition B detonation residuals.
Composition B (Comp B) detonation residuals pose environmental concern to the U.S. Army because hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a constituent, has contaminated groundwater near training ranges. To mimic their dissolution on surface soils, we dripped water at 0.51 ml/h onto individual Comp B particles (0.1-2.0 mg) collected from the detonation of 81-mm mortars. Analyses of the eff...
متن کاملDissolution and transport of TNT, RDX, and composition B in saturated soil columns.
Low-order detonations and blow-in-place procedures on military training ranges can result in residual solid explosive formulations to serve as distributed point sources for ground water contamination. This study was conducted to determine if distribution coefficients from batch studies and transport parameters of pure compounds in solution adequately describe explosive transport where compounds...
متن کاملNatural and Enhanced Attenuation of Explosives on a Hand Grenade Range.
2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, or RDX) deposited on hand grenade training ranges can leach through the soil and impact shallow groundwater. A 27-mo field monitoring project was conducted to evaluate the transport and attenuation of high explosives in variably saturated soils at an active grenade range located at Fort Bragg, N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 70 7 شماره
صفحات -
تاریخ انتشار 2008